HISTORY | PURCHASE | JOIN | STEM CELL ENHANCERS

**This is the ONLY Natural product in the WORLD that Releases MILLIONS More STEM CELLS into Your Bloodstream !**
DIABETES - HIGH BLOOD PREASURE - PARKINSON'S DISEASE - AND ANY
World's First STEM CELL ENHANCER! Release 3 Million NEW STEM CELLS in 90 Minutes!

What are adult stem cells?



An adult stem cell is thought to be an undifferentiated cell, found among differentiated cells in a tissue or organ that can renew itself and can differentiate to yield some or all of the major specialized cell types of the tissue or organ. The primary roles of adult stem cells in a living organism are to maintain and repair the tissue in which they are found. Scientists also use the term somatic stem cell instead of adult stem cell, where somatic refers to cells of the body (not the germ cells, sperm or eggs). Unlike embryonic stem cells, which are defined by their origin (the inner cell mass of the blastocyst), the origin of adult stem cells in some mature tissues is still under investigation.

Research on adult stem cells has generated a great deal of excitement. Scientists have found adult stem cells in many more tissues than they once thought possible. This finding has led researchers and clinicians to ask whether adult stem cells could be used for transplants. In fact, adult hematopoietic, or blood-forming, stem cells from bone marrow have been used in transplants for 40 years. Scientists now have evidence that stem cells exist in the brain and the heart. If the differentiation of adult stem cells can be controlled in the laboratory, these cells may become the basis of transplantation-based therapies.

The history of research on adult stem cells began about 50 years ago. In the 1950s, researchers discovered that the bone marrow contains at least two kinds of stem cells. One population, called hematopoietic stem cells, forms all the types of blood cells in the body. A second population, called bone marrow stromal stem cells (also called mesenchymal stem cells, or skeletal stem cells by some), were discovered a few years later. These non-hematopoietic stem cells make up a small proportion of the stromal cell population in the bone marrow, and can generate bone, cartilage, fat, cells that support the formation of blood, and fibrous connective tissue.

In the 1960s, scientists who were studying rats discovered two regions of the brain that contained dividing cells that ultimately become nerve cells. Despite these reports, most scientists believed that the adult brain could not generate new nerve cells. It was not until the 1990s that scientists agreed that the adult brain does contain stem cells that are able to generate the brain's three major cell types—astrocytes and oligodendrocytes, which are non-neuronal cells, and neurons, or nerve cells.
Other articles and science reports on Adult Stem Cells.
Check, E., Cardiologists take heart from stem-cell treatment success, Nature 428(6986):880, 29 April 2004: "Adult stem cells have long been viewed as less flexible than embryonic stem cells, which can divide to produce any cell type in the body. But recent studies of human cells suggest that adult stem cells can also turn into many cell types, including heart, brain and liver cells."

Terada, N. et al., Bone marrow cells adopt the phenotype of other cells by spontaneous cells fusion, Nature (416(6880):542–545, 4 April 2002.

Cohen, P., Stem cells could save sight, New Scientist 175:(2354):18, 3 August 2002.

Stem cells do their stuff for Parkinson’s patient, New Scientist 174(2338):5, 13 April 2002.

Randerson, J., Stem cells fix the damage, New Scientist 177(2377):14, 11 January 2003.

Pluchino, S. et al., Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis, Nature 422(6933):688–694, 17 April 2003.

Jochen Ringe et al., Stem cells for regenerative medicine: advances in the engineering of tissues and organs, Naturwissenschaften 89(8), August 2002.

About the Formulator of StemEnhance - Christian Drapeau
Mr. Drapeau, a foremost scientist in the study of Aphanizomenon flos-aquae, holds a Masters of Science degree in Neurology and Neurosurgery from the Montreal Neurological Institute, an affiliate of McGill University in Montreal, Quebec, Canada. He has been extensively involved in the study of nutrition, naturopathy, and various natural therapies.

Most significantly, Mr. Drapeau collaborated with many scientists affiliated with Harvard University, McGill University, the University of Illinois, Oregon State University, the University of New Mexico, and the University of Mississippi in the study of the effects of blue-green algae (Aphanizomenon flos-aquae) on human health. Mr. Drapeau continues his involvement in the clinical study of AFA.

Circulating stem cells can reach various organs and become cells of that organ, helping such organ regain and maintain optimal health. Recent studies have suggested that the number of circulating stem cells is a key factor; the higher the number of circulating stem cells the greater is the ability of the body at healing itself. What happens to stem cells if they do not reach a tissue? Stem cells released from the bone marrow that do not reach a tissue simply return to the bone marrow after some time

United States Patent Patent No.: 6,814,961 B1 Date of Patent: November 9, 2004 Subj: METHOD FOR ENHANCING STEM CELL PHYSIOLOGY Inventors: Gitte S. Jensen and Christian Drapeau